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Abstract
Aim: Planning conservation action requires accurate estimates of abundance and 
distribution	of	 the	 target	species.	For	many	mammals,	particularly	 those	 inhabiting	
tropical forests, there are insufficient data to assess their conservation status. We 
present a framework for predicting species distribution using jaguarundi (Herpailurus 
yagouaroundi), a poorly known felid for which basic information on abundance and 
distribution is lacking.
Location: Mesoamerica	and	South	America.
Time Period: From	2003	to	2021.
Taxa: Herpailurus yagouaroundi.
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1  |  INTRODUC TION

Species conservation action and management require basic knowl-
edge of the distribution and abundance of the target species. 
However, such basic information is lacking for the majority of mam-
malian species, and assessments of threats and extinction risks are 
often based on expert opinion or unvalidated field methods, rather 
than	empirical	data	(e.g.	the	IUCN	Red	List,	Burgin	et	al.,	2018,	IUCN	
2023	accessed	1-	Feb-	2023).	Data	on	abundance	and	distribution	are	
notably scarce for many small-  and medium- sized tropical mammal 
species (Bachman et al., 2019).	 A	 good	 example	 is	 the	 jaguarundi	
(Herpailurus yagouaroundi), an understudied small felid, ranging 
throughout	Latin	America	(Caso	&	Oliveira,	2015). Here, we assess 
the habitat associations, predict the geographic range, and estimate 
global population abundance of the jaguarundi.

Despite jaguarundis being the most widespread small felid 
species in the Western Hemisphere (Caso & Oliveira, 2015), a re-
view of the ecology and status of jaguarundis by Giordano (2016) 
highlighted the paucity of jaguarundi- specific studies and the 
lack of information regarding species status throughout its range. 
Jaguarundis lack the necessary traits to attract research focus: the 
species	is	small-	sized	(3–8 kg),	not	particularly	charismatic,	not	asso-
ciated with any economically important zoonosis, generally resides 
in range countries with limited economic capacity for ecological re-
search, and individuals are not uniquely distinguishable from photo 

records (Caso & Oliveira, 2015; Giordano, 2016; Tensen, 2018). 
Evidence suggests that jaguarundis occur in a range of habitats with 
dense undergrowth, and are present in mixed landscapes with low 
intensity agriculture, frequently co- occurring with other carnivore 
species associated with human- disturbed lands (Giordano, 2016). 
However, the extent to which they use different habitats or tolerate 
human activities is poorly known (Giordano, 2016).	As	one	of	 the	
few fully diurnal cat species (Giordano, 2016), they are sighted reg-
ularly, compared with sympatric cat species, giving the perception 
that	they	are	common	(pers.	obs.	B.H.,	R.F.).	The	most	recent	IUCN	
assessment of jaguarundi status and extinction risk indicated that, 
while	the	species	may	be	Near	Threatened,	data	were	insufficient	to	
make this judgement range wide (Caso & Oliveira, 2015). Therefore, 
the assessors listed the species as Least Concern, with the caveat 
that it should be regularly revised as more data become available.

The advent of camera traps has greatly facilitated the study of cryp-
tic, terrestrial mammals, especially in the tropics (O'Connell et al., 2010), 
allowing the study of previously unknown species. Camera- trapping 
effort	 in	the	Neotropics	has	 increased	since	the	turn	of	the	twenty-	
first century, most notably for monitoring jaguars (Panthera onca, e.g. 
Foster	 et	 al.,	2020; Harmsen et al., 2017;	 Jȩdrzejewski	 et	 al.,	2018; 
Silver et al., 2004) but also for keeping track of the forest mammal 
community	in	general	(i.e.	TEAM	network,	Ahumada	et	al.,	2011). The 
wide deployment of camera grids for estimating jaguar density (see 
Foster	et	al.,	2020 for an overview) has resulted in several range and 

Methods: We combined camera- trap data from multiple sites and used an occupancy 
modelling framework accounting for imperfect detection to identify habitat associa-
tions and predict the range- wide distribution of jaguarundis.
Results: Our model predicted that the probability of jaguarundi occupancy is positively 
associated with rugged terrain, herbaceous cover, and human night- time light inten-
sity. Jaguarundi occupancy was predicted to be higher where precipitation was less 
seasonal, and at intermediate levels of diurnal temperature range. Our camera data 
also revealed additional detections of jaguarundis beyond the current International 
Union	 for	Conservation	of	Nature	 (IUCN)	 range	distribution,	 including	 the	Andean	
foothills of Colombia and Bolivia.
Main Conclusion: Occupancy	was	predicted	to	be	low	throughout	much	of	Amazonian	
lowlands,	a	vast	area	at	 the	centre	of	 jaguarundi	known	range.	Further	work	 is	 re-
quired to investigate whether this area represents sub- optimal conditions for the spe-
cies. Overall, we estimate a crude global jaguarundi population of 35,000 to 230,000 
individuals,	 covering	 4,453,406 km2	 of	Meso-		 and	 South	America	 at	 the	 0.5	 prob-
ability level of occupancy. Our current framework allows for an initially detailed, well- 
informed species distribution that should be challenged and refined with improved 
habitat layers and additional records of jaguarundi detection. We encourage similar 
studies of lesser- known mammals, pooling existing by- catch data from the growing 
bank of camera- trap surveys around the world.

K E Y W O R D S
By-	catch	data,	Camera	trap,	Felids,	Neotropics,	Occupancy	modelling,	Species	distribution
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region- wide assessments of jaguars within a single analytical frame-
work	 (e.g.	 Jȩdrzejewski	 et	 al.,	2018; Paviolo et al., 2016).	 Although	
mostly deployed for jaguars, these multitude of camera studies have 
detected	many	species	beyond	the	largest	cat	of	the	Americas.

Camera traps log detections of all species that trigger the sen-
sors, and thus provide considerable data on non- target species 
(“by-	catch”	data).	Many	of	these	species	do	not	have	visually	unique	
individual features necessary for mark–recapture abundance estima-
tion.	In	such	cases,	an	occupancy	modelling	framework	(MacKenzie	
et al., 2002), using presence/absence data and sampling effort, can 
provide a robust estimate of the species' probability of resource use 
across the landscape. This approach has allowed range- wide as-
sessments of the habitat associations and distribution of previously 
understudied species, including two threatened species, the white- 
lipped peccary (Tayassu pecari, Thornton et al., 2020) and the Baird's 
tapir (Tapirus bairdii, Schank et al., 2020).

Detections of jaguarundis by camera traps are notably rare when 
compared with sympatric felids, white- lipped peccary or Baird's tapir 
(e.g. Carrera- Treviño et al., 2018; Di Bitetti et al., 2010; Gil- Sánchez 
et al., 2021;	 Maffei	 et	 al.,	 2007; Schank et al., 2020; Thornton 
et al., 2020). Recent efforts to assess jaguarundi abundance and distri-
bution have been mainly restricted to local density estimates (Ecuador, 
Gil- Sánchez et al., 2021), and presence- only data that do not account 
for sampling effort (da Silva et al., 2016; Espinosa et al., 2018). Presence- 
only methods assume equal sample effort and detectability and are 
biased if these assumptions are not met. Grattarola et al. (2023) tried 
to account for this by modelling “presence- only” data in combination 
with an absence index with unknown search effort. Occupancy mod-
elling explicitly accounts for detection probability and sampling effort 
(Guillera-	Arroita	et	al.,	2014).	Failure	to	account	for	detection	proba-
bility and sampling effort is compounded when records are sparse and 
detection	probability	is	low	(Guillera-	Arroita	et	al.,	2014).

In this study, we use an occupancy modelling framework and 
camera- trap data from across the species range, to predict relative 
probability of jaguarundi habitat use and distribution. Given the low 
detection records of jaguarundis in the literature, and the need to 
incorporate sampling effort to account for imperfect detection, we 
only include camera survey data with known sampling effort. This 
approach allows us to quantify the relative probability of occu-
pancy and absence, allowing inference about jaguarundi habitat use, 
geographic range, and a first crude estimation of global population 
abundance based on our predicted area of occupancy (e.g. Steenweg 
et al., 2018, 2019). We consider our current effort the most thor-
ough study, to date, on jaguarundi status across its range.

2  |  METHODS

2.1  |  Study area

All	authors	in	this	study	contributed	raw	data	from	182	surveys	in	13	
range	countries	(Mexico,	Belize,	Guatemala,	El	Salvador,	Honduras,	
Nicaragua,	 Costa	 Rica,	 Panama,	 Colombia,	 Venezuela,	 Guyana,	

Suriname, and Brazil). Surveys were conducted between 2003 and 
2021.	 Sampling	 was	 highly	 skewed	 towards	 Mesoamerica,	 with	
higher survey effort compared to other regions (Table 1; Figure 1). 
Our study concerned prediction of jaguarundi range, and thus cov-
ered	the	known	Neotropical	 jaguarundi	range	of	Meso-		and	South	
America,	 however	 our	 sample	 lacked	 representation	 from	 the	
Amazon	region,	which	may	be	considered	the	spatial	core	of	jagua-
rundi distribution range (Caso & Oliveira, 2015, Figure 1).

2.2  |  Data preparation

All	data	were	collapsed	into	a	single	data-	frame,	where	each	row	rep-
resented: a camera location with associated World Geodetic System 
(WGS 84) lat–long coordinates, name of survey, country of origin, and 
detection	or	non-	detection	of	jaguarundi	within	a	single	24 h	day	(detec-
tion =1,	non-	detection = 0).	Each	row	contained	covariate	information	
relating	to	habitat	type,	climate	conditions,	and	human	disturbance.	As	
camera- trap researchers usually do not gather habitat or environmental 
information around camera locations in a standardised fashion, we were 
limited to the use of range- wide remote- sensing data, overlaying map 
data	with	camera	locations.	As	this	was	an	exploratory	analysis,	we	used	
an extensive array of spatial covariates (n = 19)	that	we	expected	would	
influence carnivore or mammal occupancy based on previous studies 
(e.g.	Jȩdrzejewski	et	al.,	2018, see Tables 2 and S1).	Additional	informa-
tion about the covariates (i.e. annual variation, data source, abbreviated 
name notations) is provided in Tables 2 and S1. The habitat, climate, and 
human influence conditions around the camera locations did not repre-
sent the full range of conditions found across the known range of the 
species.	For	comparison,	we	provide	in	Table S2 the covariate range val-
ues across the sampled sites, together with the range values across the 
IUCN	jaguarundi	distribution	range	(IUCN	distribution	map	from	Caso	
& Oliveira, 2015). Figure S1 provides a visual “heat map” representation, 
showing how the covariates vary across the continents.

We	overlaid	the	area	with	a	sampling	grid	of	6 × 6 km	cells	(36 km2, 
hereafter we shall use the term “site” to refer to a sample grid cell). 
Within occupancy modelling, the choice of site cell size can be some-
what arbitrary. Some studies have based cell size on the conserva-
tive	lower	end	of	home	range	size	of	the	target	species	(e.g.	36 km2 
for white- lipped peccary (Thornton et al., 2020)	or	10 km2 for jaguars 
(Petracca et al., 2018)). To date, range size estimation for jaguarundi 
has	 been	 anecdotal	 and	 highly	 variable,	 and	we	 chose	 6 × 6 km	 to	
reflect	 a	 reasonable	 home	 range	 size	 for	 a	 small	 Neotropical	 cat	
(Sunquist & Sunquist, 2002). We pooled all camera data within a site 
and	used	 the	 site	as	 the	 sampling	unit.	As	 the	number	of	 stations	
and sampling effort (number of trap- nights) varied between sites, 
we used these as covariates when modelling detection probability.

2.3  |  Analysis

None	of	the	surveys	included	here	were	originally	designed	to	moni-
tor	 jaguarundis	 specifically.	 Furthermore,	 the	 dataset	 combined	
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projects with disparate survey efforts in both space and time, with 
considerable variation in timing and duration (i.e. surveys were 
conducted throughout the year and varied in duration, ranging be-
tween	30	and	365 days).	Therefore,	we	explored	a	variety	of	mod-
elling approaches using extensions to the standard single- season 
occupancy	model	 (MacKenzie	 et	 al.,	2002), including stacked (e.g. 
Fuller	et	al.,	2016; Linden & Roloff, 2013), autologistic (e.g. Tingley 
et al., 2016), continuous- time multiscale (Emmet et al., 2021), 

dynamic	multi-	season	models	 (MacKenzie	et	al.,	2003), and spatial 
occupancy models (Doser et al., 2022).

2.3.1  |  Occupancy	analysis

We found that the stacked occupancy model implementation 
best accommodated our constraints and survey variability. This 

F I G U R E  1 Location	of	camera-	trap	stations	(blue	triangles)	used	for	estimating	jaguarundi	occupancy	overlaid	with	the	current	predicted	
jaguarundi range in beige (Caso & Oliveira 2015); red line indicates country borders.
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model allowed us to include the multi- year surveys conducted 
at several sites within a single- season occupancy model. Here, a 
single- season occupancy model is fit but the combination of site 
and year (hereafter “site- year”) becomes the sample unit used for 
occupancy probability, with each year represented as a separate 
survey (site- year). We used year- specific values per site- year for 
nine of the covariates, matching environmental conditions with 
the year a survey was conducted (see Table 2).	 A	 random	 ef-
fect for site was incorporated in the model to avoid artificially 
deflating variance and account for non- independence between 
repeated surveys that occur at the same site. We used a 7- day 
sampling	occasion	(i.e.	collapsed	7 days	into	one	encounter	occa-
sion), such that the first day of the first sampling occasion began 
on whatever calendar date a camera became operational at any 
given	 site.	 For	 11	 covariates,	 we	 hypothesised	 that	 a	 quadratic	
relationship, rather than linear, might have a better fit, with a 
peak in occupancy at an intermediate value of the covariate (e.g. 
minimal occupancy at temperature extremes, maximal occupancy 
at mid- level temperatures). We therefore assessed the quadratic 
relationship for 11 climatic, elevation- derived, and human devel-
opment covariates. We centred and scaled all covariates before 
model fitting, using a Z transformation, using R (R Core Team., 
2022), resulting in all covariate values having a mean of 0 and a 
standard deviation (SD) of 1.

We used a multi- stage process to determine the final model. 
We first tested if sampling effort (i.e. the number of trap- nights 
per sample occasion) and the number of camera stations in each 
occasion (both log- transformed) had an effect on the probability 
of detection by fitting models with detection covariates but con-
stant	 occupancy	 (i.e.	 the	 null	model	 Pr(occ) ~ 1).	 Using	 the	 best-	
fit detection model, we ran models for each occupancy covariate 
individually	 (single	 covariate	 models).	 For	 the	 covariates	 listed	
above, we assessed both a linear relationship and a quadratic rela-
tionship and compared these models using expected log pointwise 
predictive density (ELPD), with higher values of ELPD indicating 
a	more	 supported	model	 (Vehtari	 et	 al.,	2017). We considered a 
difference of 4 points to be significant for these comparisons and 
otherwise chose the more parsimonious (linear) model. We then 
retained covariates, either linear only or linear and quadratic de-
pending on the best fit, for which the posterior distribution did not 
cross 0 and were not highly correlated (> 0.6)	at	the	90%	credible	
interval (CI) for the global model. Figure S2 provides additional in-
formation	on	how	all	the	19	covariates	were	correlated	with	each	
other across the continent.

To assess the robustness of our model outcome, we equally 
ran an alternative model set up, using a spatial occupancy model 
implementation, using the spOccupancy package in R (Doser 
et al., 2022; R Core Team, 2022). While our stacked model ac-
counted for autocorrelation, using a random effect for site, the 
spOccupancy package allows the inclusion of spatial random ef-
fect. We used the same workflow as described above and provide 
results in a supplementary section (see Supplement: spatial occu-
pancy results).

2.3.2  |  Prediction

Using our global model, we predicted the probability of jaguarundi 
occupancy using mean point estimates for occupancy and covari-
ate	coefficient	parameters.	As	we	created	prediction	maps	outside	
our study area with covariate values sometimes exceeding or fall-
ing below the values found within our surveyed areas, we capped 
the covariate values to the maximum or minimum as found in our 
surveyed areas to avoid overprediction when extrapolation to areas 
where values exceeded or went below the maximum or minimum 
values for our survey areas. We used an external dataset to vali-
date our predicted occupancy probability across jaguarundi range 
as predicted from our final model. The recently published dataset 
by	Nagy-	Reis	et	al.	(2020) contains presence records from a variety 
of	Neotropical	 carnivores.	We	 filtered	 this	 external	 dataset	 to	 in-
clude only camera surveys and used only one record of jaguarundi 
per unique coordinate location (n = 1262).	We	 binned	 our	 predic-
tion layer into 10 quantiles and extracted the categorised predicted 
probability of occupancy for each observed jaguarundi occurrence 
from the external dataset. We evaluated Spearman's rank correla-
tion (rho or rs) based on the number of occurrences that fell within 
each predicted probability bin.

We used three probability thresholds (0.6, 0.75, and 0.8) to 
assess the jaguarundi range boundary. Within each predicted 
range,	we	excluded	small	(≤ 36 km2) and highly isolated areas that 
could not support multiple jaguarundis and estimated the total 
area of predicted jaguarundi occupancy for each of the three 
thresholds. We then calculated a simple estimate of the number 
of male and female jaguarundis that may be supported in the total 
area of occupancy, assuming two jaguarundis (one male and one 
female)	per	36 km2.

All	 models	 were	 fit	 and	 predicted	 using	 “ubms”	 (unmarked	
Bayesian	models	with	Stan)	(Kellner	et	al.,	2022) via program R (ver. 
4.1.3; R Core Team, 2022) using the stan_occu function. We ran all 
models (both single covariate and global models) for three chains of 
15, 000 iterations each and otherwise used the default settings. To 
assess general model convergence, we visually assessed trace plots 
and posterior distributions and checked that all R- hat convergence 
diagnostic	values	were < 1.05	(Vehtari	et	al.,	2021) for both the indi-
vidual covariate models and the global model.

3  |  RESULTS

The	 combined	 dataset	 included	 385,908	 trap-	nights	 from	 662	
unique sites, which encompassed 3856 camera stations (Table 1). 
The number of surveyed sites varied widely among countries, 
from	 three	 in	 Suriname	 to	 97	 in	 Costa	 Rica	 (median = 51).	 The	
number of sampling occasions per site- year ranged from 1 to 53 
(median = 11).	The	majority	of	surveys	were	conducted	after	2010,	
with	only	Belize	and	Nicaragua	having	eight	surveys	conducted	in	
previous years (Table 1). There were 884 unique jaguarundi de-
tections (jaguarundis detected at a single camera station within 
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8 of 18  |     HARMSEN et al.

24 h)	 falling	 within	 727	 independent	 sampling	 occasions	 at	 215	
sites	 (naïve	 occupancy = 0.325).	 Seventy-	seven	 detections	 fell	
outside	of	 the	 current	 IUCN	 jaguarundi	 range	map	 showing	 jag-
uarundi occurrence in north- eastern El Salvador, central northern 
and	 southern	 Honduras,	 and	 the	 northern	 Andes	 of	 Colombia.	
Detection frequencies varied widely across sites and countries. 
Across	all	 sampled	sites,	unique	detections	of	 jaguarundi	 ranged	
from	5	to	347	(median = 36,	see	Table 1) and capture rates ranged 
from	0.086	to	0.574	detections	/	100	trap-	nights	(median = 0.237;	
see Table 1).

3.1  |  Occupancy analysis

Both effort (i.e. the total number of trap- nights) and number of 
camera stations for each site- year had a positive and supported 
influence on detection probability (Figure 2).	As	 such,	 these	pa-
rameters were included in the detection model for all occupancy 
models.

All	 single	covariate	models	 reached	convergence,	having	 suf-
ficient support to be considered in a final model, with Figure S3 
showing single peak normal distributions and Figure S4 showing 
trace plots remaining within a narrow and consistent band with 
each iteration. However, only six covariates influenced jagua-
rundi occupancy substantially enough to meet our criteria for final 
model inclusion (Table 3; Figure S5): annual mean diurnal tem-
perature range, precipitation seasonality, harmonised night- time 
light intensity, percent non- tree vegetation, slope, and terrain 
ruggedness index. Slope and ruggedness were highly correlated 
(>0.6, see Figure S2), so we dropped slope from the global model 
as ruggedness had the larger magnitude of influence (Figures S3; 
Table S3).	For	 the	remaining	five	variables,	only	annual	mean	di-
urnal temperature better fit the data as a quadratic rather than 
a linear relation (Figures S3b and S4b; Table S4). Our final model 
comprised five environmental variables modelled as fixed effects 
on occupancy probability, a random effect for site, and two vari-
ables for detection probability (Figure 2; Table 3, with Figure S6 
showing trace plots for final model).

In	our	final	model,	detection	probability	was	low	(mean = 0.078,	
90%	CI:	0.071,	0.085	on	 the	 real	probability	scale;	mean = −2.725,	
90%	CI:	−2.936,	−2.515	on	the	logit	scale)	when	the	number	of	trap-	
nights and the number of camera stations were held at their mean 
and median values, respectively (23.5 trap- nights and 4 camera sta-
tions per occasion). Occupancy variance (sigma) was relatively large 
compared	to	covariate	effects	(mean = 2.133,	90%	CI:	1.501,	2.890,	
Table 3), indicating variance among sites was not fully explained by 
the range- wide covariates. With all covariates held at their means 

and ignoring group- level random effects, baseline probability of 
occupancy (the intercept) in our global model was 0.516 on the 
real	probability	scale	(90%	CI:	0.408,	0.627;	mean = 0.064,	90%	CI:	
−0.370,	0.519	on	the	logit	scale).

Percent non- tree vegetation, harmonised global night- time 
light intensity, and terrain ruggedness index all had a positive in-
fluence on occupancy probability (Table 3; Figure 2; Figures S5 and 
S6). In contrast, there was evidence that precipitation seasonality 
had	a	negative	influence	on	occupancy,	although	the	90%	CI	over-
lapped marginally with 0 in the global model (Table 3; Figure 2b; 
Figures S5 and S6).	 For	 the	 annual	 mean	 diurnal	 temperature	
range, occupancy had a bell- shaped quadratic relationship, rising 
then falling with increasing temperature range (Table 3; Figure 2b; 
Figures S5). Ruggedness had the highest absolute magnitude rela-
tive	to	the	other	spatial	covariates	(mean = 0.478,	CI	(90%) = 0.105–
0.901)	followed	by	the	diurnal	temperature	range	(mean = −	0.431,	
CI = −0.679	 –	 −0.194),	 percent	 non-	tree	 vegetation	 (mean = 0.426,	
CI = 0.073–0.812),	light	intensity	(mean = 0.336,	CI = −0.01	–	0.722),	
and	precipitation	seasonality	 (mean = −0.231,	CI = −0.643	–	0.162).	
See Figure S5 for visual inspection of posterior distribution of the 
included variables in the final model. See Figure S7 for visual inspec-
tion on where values were capped for the five model covariates in-
cluded in the final model.

The spatial occupancy implementation (see Supplement: spatial 
occupancy results) gave similar results as our stacked model, indicat-
ing that our occupancy implementation was robust.

3.2  |  Prediction

Our model predicted low probability of jaguarundi occupancy 
throughout	much	of	Mexico,	primarily	 in	 the	desert,	 temperate	si-
erras,	and	southern	semi-	arid	highlands	and	the	Yucatan	Peninsula	
(Figure 3).	 Throughout	 the	 rest	 of	 Mesoamerica,	 our	 model	 pre-
dicted a high likelihood of jaguarundi occupancy (Figure 3). In South 
America,	 we	 predicted	 high	 probability	 throughout	 the	 northern	
Andes	of	Ecuador,	Colombia,	and	Venezuela,	with	pockets	of	high	
probability of jaguarundi occupancy in Guinian Highlands, Ilanos of 
Colombia, and the Cerrados (Figure 3). Probability occupancy was 
also	high	in	north-	eastern	Caatinga	and	throughout	the	Atlantic	for-
ests of Brazil and Paraguay, the humid Chaco of Paraguay, central 
Bolivia,	and	eastern	Argentina	 (Figure 3). However, the probability 
of jaguarundi occupancy was predicted to be low throughout much 
of	the	rest	of	the	Amazonian–Orinocan	lowland,	particularly	in	the	
Amazon	and	coastal	lowlands	and	the	moist	forests	of	the	Brazilian	
Shield,	 as	 in	 the	Central	Andes	 (Figure 3). The area of occupancy 
covered	 4,453,406 km2 at the lowest probability threshold (0.5), 

F I G U R E  2 (a)	Influence	of	trap	effort	on	detection	probability	of	jaguarundi	(upper	graph),	and	influence	of	number	of	camera	stations	on	
detection	probability	of	jaguarundi	within	a	site	(6 × 6 km2	grid	cell;	lower	graph).	The	data	are	centred	with	mean = 0	and	log-	transformed.	
The	grey	shading	around	the	graph	line	represents	the	90%	CI.	(b)	Influence	of	the	five	covariates,	included	in	the	final	model,	on	occupancy	
probability of jaguarundi. Effects of each covariate on range- wide jaguarundi occupancy are shown while holding all other four covariates at 
their	median,	with	90%	CI	indicated	in	grey.
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10 of 18  |     HARMSEN et al.

2,030,093 km2	at	the	intermediate	threshold	(0.65),	and	652,002 km2 
at the most conservative threshold (0.8), see Figure 4. Figure S8 
shows a similar prediction map as Figure 4, clearly indicating which 
areas were affected by capping values.

External validation data (see Figure 3) indicated that our model 
predicted the probability of occurrence well (rs = 0.9154,	 p- value 
<.001, see Figure 3 for distribution of external validation points). 
Substantially more occurrences fell within our higher predicted 
probability	bins;	46.9%	of	the	external	observations	fell	within	our	
top third of predicted occupancy probability (bins 8–10; Figure 5). 
Using our simple equation of abundance estimate, multiplying the 
number	 of	 occupied	 cells	 of	 36 km2 by 2, we estimate the global 
jaguarundi populations as 36,222 individuals at the most conserva-
tive occupancy threshold (0.8), 112,783 individuals at an occupancy 
probability threshold of 0.65, and for the lowest threshold of occu-
pancy probability (0.5), we estimate 247, 411 individuals.

4  |  DISCUSSION

Although	the	range	of	the	jaguarundi	is	known	to	span	the	Western	
Hemisphere,	from	Mexico	to	Argentina	(Caso	&	Oliveira,	2015), we 
noted	 new	 records	 in	 southwestern	Mexico,	 southern	Guatemala,	
north- eastern El Salvador, central northern and southern Honduras, 
the	northern	Andes	of	Colombia,	and	the	central	Andes	of	Bolivia	
(this	 study	 and	 Nagy-	Reis	 et	 al.,	 2020). Pooling camera- trap data 
from multiple sites across the region and using occupancy modelling, 
we found positive associations between jaguarundi occupancy and 
level of: non- tree vegetative cover (undergrowth and shrub habitat), 

human land- use (measured as night- time light intensity), intermedi-
ate diurnal temperatures, and rugged terrain, while seasonal varia-
tion in precipitation had a negative association with occupancy.

Despite almost 400,000 trap- nights, detection rates were con-
sistently	 low,	 ranging	 from	0.09	detections	per	100	 trap-	nights	 in	
Guyana to 0.57 in Honduras. These results compare similarly with 
the few published detection rates of jaguarundi in other camera- trap 
studies	across	the	Neotropics,	ranging	from	0.03	to	0.81	detections	
per 100 trap- nights (Boron et al., 2020; Carrera- Treviño et al., 2018; 
Di Bitetti et al., 2010; Gil- Sánchez et al., 2021;	Maffei	et	al.,	2007; 
Santos et al., 2019). In most of these studies, camera traps were de-
ployed to optimise the detection of larger felids (jaguars and pumas, 
Puma concolor), thus were potentially sub- optimal for smaller spe-
cies, resulting in low detection rates of jaguarundis (see Harmsen 
et al., 2021).

Negative	biases	in	occupancy	estimates	can	arise	due	to	the	ef-
fects of unmodelled heterogeneity in the probability of detection 
(‘detectability’;	Mackenzie	&	Royle,	2005).	Although	our	model	ac-
counted for heterogeneity in effort between the sample sites, there 
likely remains unexplained heterogeneity in detectability within 
sites between camera stations, associated with factors such as cam-
era height, trail width, camera placement, camera model, and vari-
ation in micro- habitat around cameras. The influence of this kind of 
heterogeneity on occupancy estimates may be exacerbated if the 
species	has	 low	detectability	 (Mackenzie	&	Royle,	2005), as jagua-
rundis seem to have across their range. The chance of detecting 
jaguarundis in an area increased with trapping effort. Jaguarundis 
were more likely to be detected at sites with more camera sta-
tions and more sampling occasions, indicating that knowledge of 

Mean SD LCI UCI R- hat

Occupancy probability

Intercept 0.064 0.270 −0.370 0.519 1.00

Annual	mean	diurnal	temp.	
range

−0.198 0.196 −0.523 0.121 1.00

Annual	mean	diurnal	temp.	
range (quadratic)

−0.431 0.148 −0.679 −0.194 1.00

Precip. seasonality −0.231 0.246 −0.643 0.162 1.00

Harmonised global night- 
time light intensity

0.336 0.224 −0.010 0.722 1.00

Perc. non- tree vegetation 0.426 0.225 0.073 0.812 1.00

Terrain ruggedness index 0.478 0.244 0.105 0.901 1.00

Sigma (site random effect) 2.133 0.022 1.501 2.890 1.00

Detection probability

Intercept −2.725 0.129 −2.936 −2.515 1.00

Camera trap- nights 0.285 0.034 0.230 0.341 1.00

No.	of	stations 0.181 0.068 0.070 0.293 1.00

Note:	The	results	are	for	the	six	variables	for	which	the	90%	posterior	distribution	(CI)	did	not	
include 0, using single covariate occupancy models. We include both the quadratic and the linear 
results for annual mean diurnal temperature range. Presented are the mean, standard deviation 
(SD),	the	lower	boundary	of	the	90%	credible	interval	(LCI),	upper	boundary	of	the	90%	credible	
interval (UCI), and the R- hat convergence diagnostic.

TA B L E  3 Final	model	parameter	
estimates of jaguarundi occupancy and 
detection, using a Bayesian analysis 
framework.
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sample effort is vital to understand occupancy and presence. In the 
absence of validation, we caution against the use of models mak-
ing	 impactful	 statements	 about	 species	 distribution.	 For	 example,	
Grattarola et al. (2023) described a sizable change in jaguarundi 
distribution across the last two decades. Using a published dataset 
(Nagy-	Reis	et	al.,	2020), they described a north–south species range 

contraction, and an overall east–west expansion within the last de-
cade, comparing the periods 2000–2013 and 2014–2021. Such a 
statement implies considerable environmental change and/or per-
turbation on the species, coinciding with extensive extinction and 
colonisation events across this latter decade. However, their models 
did not include sample effort, instead using presence- only and an 

F I G U R E  3 Predicted	probability	of	occurrence	across	jaguarundi	range,	derived	from	our	final	occupancy	model.	The	probability	of	
occupancy is shown as 10 separate bin colours, varying from low chance of occupancy (yellow) to high chance of occupancy (dark blue), 
using	green	as	an	intermediate.	The	red	dots	in	the	map	indicate	locations	where	jaguarundi	were	detected,	using	the	database	of	Nagy-	Reis	
et al. (2020).
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12 of 18  |     HARMSEN et al.

absence index based on the overall non- reporting of jaguarundi. On 
close	inspection	of	the	Nagy-	Reis	et	al.	(2020) dataset, the reported 
survey activity was highly variable across space, between the two 
decades,	contracting	along	the	North–South	axis	and	expanding	on	
the West–East axis, seemingly following the pattern of extinction 
and colonisation reported by Grattarola et al. (2023).

Jaguarundis are commonly associated with areas of dense shrub 
or undergrowth which provide den sites, shade during diurnal ac-
tivity, shelter, cover for ambush hunting, and likely support abun-
dant populations of rodents and birds, their main vertebrate prey 
(Giordano, 2016).	 Accordingly,	 we	 found	 that	 the	 probability	 of	
jaguarundi occupancy increased with non- tree vegetative cover, 

F I G U R E  4 Predicted	probability	of	occurrence	across	jaguarundi	range,	derived	from	our	final	occupancy	model.	We	show	three	
threshold levels of occupancy, in three colours, from high threshold to low: probability of occurrence: 0.5 (yellow), 0.65 (green) and 0.8 
(blue).	The	original	assessed	IUCN	red	list	jaguarundi	range	is	overlaid	in	beige	(Caso	&	Oliveira,	2015).
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    |  13 of 18HARMSEN et al.

suggesting a preference for grasslands, savannas, and shrublands, 
and potentially agricultural lands, rather than forest interiors or bare 
ground.	Additionally,	 jaguarundi	occupancy	increased	with	the	ter-
rain ruggedness. Potentially, their elongated body form, long tail, and 
comparatively short legs allow jaguarundis to exploit rough areas 
that are less accessible to their competitors. In carnivores, active 
selection for rugged terrain may provide refugia from interspecific 
competition and predation (Durant, 1998), for example safe denning 
sites (e.g. Eurasian lynx, Lynx lynx; White et al., 2015), as well as giv-
ing an advantage when stalking prey (e.g. dhole, Cuon alpinus, and 
puma, Puma concolor; Grassman et al., 2005; Smith et al., 2019). Both 
terrain ruggedness and non- tree vegetation cover had the strongest 
effects on jaguarundi occupancy, each having approximately twice 
the	effect	compared	to	the	next	strongest	covariate.	For	both	covari-
ates, we did not sample the upper extent of ruggedness and non- tree 
vegetative cover present within the prediction area (e.g. the peaks 
of	the	Andes,	and	the	Argentine	Pampas,	respectively).	It	is	however	
difficult to predict the effect of ruggedness beyond our sampled 
data. We would expect a cut- off point when high ruggedness be-
comes a barrier to jaguarundi movement and we know this point was 
not	reached	within	our	sampled	datasets.	Furthermore,	the	majority	
of our sites were located within non- tree vegetative cover, sampled 
natural herbaceous cover, rather than agricultural lands (pastures 
and	croplands).	As	our	covariate	 layer	did	not	distinguish	between	
natural cover and agricultural uses, our model may overestimate the 
probability of jaguarundi occupancy in extensive farmland lacking 

patches	of	dense	natural	undergrowth	or	shrubs.	Notably,	our	model	
predicted a high probability of jaguarundi occupancy throughout 
Uruguay, where despite extensive camera trapping and research ef-
fort	spanning	115 years	(da	Silva	et	al.,	2016; Espinosa et al., 2018; 
Nagy-	Reis	et	al.,	2020), there is only one confirmed detection of a 
jaguarundi (Grattarola et al., 2023).	Approximately	80%	of	 land	 in	
Uruguay is dedicated to agriculture uses, primarily livestock (The 
World Bank, 2020). We suspect that this area is devoid of jagua-
rundis and that the high probability of occupancy estimated by our 
model is an artefact of the positive association with natural herba-
ceous cover applied to extensive pasture and arable land.

Using night- time light intensity as a proxy for human impact, 
we found that jaguarundi resource use increased with human ac-
tivity. However, our sampling was confined to natural areas within 
sparsely	 populated	 rural	 communities.	 Above	 some	 threshold	
where light intensity reaches levels associated with urbanisation, 
we expect a negative relationship, with occupancy declining to 
zero in densely populated areas. Considering also the positive 
association with non- tree vegetative cover, these results suggest 
that jaguarundis tolerate some human activity and have an affinity 
for habitats associated with rural human populations. However, 
the extent to which they make use of human- modified landscapes 
is unclear (Giordano, 2016).	Although	jaguarundis	occur	in	mixed	
agricultural areas with remnants of forest fragments, several stud-
ies suggest a negative association with croplands and pastures, a 
positive association with natural herbaceous cover, and a positive 

F I G U R E  5 Number	of	jaguarundi	
occurrences from the validation dataset 
of	Nagy-	Reis	et	al.	(2020) that fell within 
10 quantile bins of predicted probability 
of occupancy, as derived from our final 
occupancy	model.	The	90%	confidence	
interval is shown in grey.
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association with proximity to native forest, which become more 
important as the proportion of crop and pasture increases (Boron 
et al., 2020; Costa et al., 2022; Cruz et al., 2019). The negative 
effect of croplands and pastures on jaguarundis versus the pos-
itive effect of natural herbaceous cover may be associated with 
prey availability. Thus, in agricultural landscapes we expect that 
jaguarundis are more successful around rural small- holdings, 
where they can supplement their diet with domestic species, par-
ticularly poultry (Giordano, 2016), and human- associated rodent 
populations. In contrast, expansive monocultures are less hospi-
table (e.g. Boron et al., 2020) and may lack sufficient prey. Living 
in human- modified landscapes exposes jaguarundis to additional 
threats.	 As	 predators	 of	 domestic	 fowl	 (Giordano,	 2016), they 
are commonly blamed for attacks on poultry and suffer retalia-
tory	killings	by	people	 (Foster,	2018). Because the diurnal activ-
ity pattern of jaguarundis coincides with human activities, roads 
pose a particular risk, disrupting their behaviour and increasing 
mortality (Gil- Sánchez et al., 2021). Indeed, in a global assessment 
on the fragmenting effect of roads and highways on mammalian 
carnivore	 species,	 jaguarundis	were	 listed	 in	 the	 top	5%	of	 spe-
cies most vulnerable to road expansion (Ceia- Hasse et al., 2017). 
Understanding the limitations of jaguarundi tolerance to human 
activity will be pivotal for its conservation in the coming decades.

Considering climatic conditions, our model predicted higher 
probabilities of jaguarundi occupancy where precipitation was less 
seasonal, and at intermediate levels of diurnal temperature range. 
We hypothesise that highly seasonal rainfall may influence jagua-
rundis directly, and indirectly via an impact on prey availability. 
Flooding	may	reduce	accessibility	to	refuges	and	hinder	movement	
across the landscape for both jaguarundis and their prey, while 
seasonal drought conditions may reduce food resources and thus 
prey abundance. In areas where climatic variation is even more 
extreme than the capped values, our model may have overesti-
mated the probability of jaguarundi occupancy in areas of higher 
seasonality in precipitation and more variable diurnal tempera-
tures, and underestimated it in capped areas where precipitation 
is not seasonal.

Our model predicted the occupancy of jaguarundi without ac-
counting for possible effect(s) of prey availability, a key driver of the 
spatial	distribution	of	obligate	carnivores.	In	the	case	of	Neotropical	
felids, prey abundance was more important than interspecific com-
petitors or habitat complexity in explaining the occupancy of jaguars, 
pumas, and ocelots (Santos et al., 2019). In the Brazilian Caatinga, 
prey occurrence had a positive effect on habitat use of oncillas and 
jaguarundis (Dias et al., 2019),	 and	 in	 the	 High	 Andes	 of	 Bolivia,	
the	occupancy	of	 the	Andean	cat	 (Leopardus jacobita) and Pampas 
cat (Leopardus colocolo) increased with prey availability (Huaranca 
et al., 2022). Given that jaguarundi diet encompasses several classes 
of small terrestrial vertebrate, estimating and including prey avail-
ability in our model was beyond the scope of this study, however we 
infer that the majority, if not all, of the covariates in our final model 
are direct predictors of suitable prey abundance and availability (e.g. 
Moreno-	Sosa	et	al.,	2022).

Our model did not incorporate the distribution or abundance of 
potential predators or interspecific competitors, which might be im-
portant explanatory variables of felid distribution. The jaguarundi is 
sympatric with at least seven other felid species, overlapping most 
extensively with jaguars, pumas, ocelots, and margays (de Oliveira 
et al., 2015;	Nielsen	et	al.,	2015; Paviolo et al., 2015). High dietary 
overlap exists between jaguarundis and the other sympatric small 
felids	(e.g.	Migliorini	et	al.,	2018; Silva- Pereira et al., 2011; Zuercher 
et al., 2022).	Although	this	may	indicate	the	potential	for	competitive	
exclusion and effects of interspecific competition on distribution, 
coexistence is likely facilitated by their differing activity patterns 
rather than spatial segregation (e.g. Dias et al., 2019;	Fox-	Rosales	&	
de Oliveira, 2023; Giordano, 2016; Santos et al., 2019). Based on size 
differences and range overlap, jaguars, pumas, and ocelots are all 
capable of killing jaguarundis (de Oliveira & Pereira, 2014). However, 
although intraguild predation occurs, it is not commonly detected 
among these species (Crawshaw, 1995;	 Magioli	 &	 Ferraz,	 2018; 
Martins	 et	 al.,	 2008). Indeed, empirical data from the Brazilian 
Caatinga showed no evidence of spatial segregation, intraguild com-
petition, or predation between jaguarundis and jaguars, pumas, oce-
lots, or oncillas (Dias et al., 2019;	Fox-	Rosales	&	de	Oliveira,	2023). 
It would be worthwhile that future analyses include occupancy and/
or detection of competing meso- carnivores within the analytical 
framework to assess impacts of competition.

Our model predicted jaguarundi area of occupancy ranging 
from	 652,002 km2	 to	 4,453,406 km2 (using the 0.8 to 0.5 occu-
pancy thresholds). This is more conservative than previous range 
estimates	 of:	 at	 14,	 900,000 km2, based on expert opinion Caso 
and Oliveira (2015);	 at	 14,	 700,	 000 km2 based on presence- only 
data and temperature as a measure of habitat suitability (Espinosa 
et al., 2018);	 or	 at	 12,000,000 km2, based on annual temperature 
range, precipitation seasonality, elevation, and net primary produc-
tivity	(NPP)	(Grattarola	et	al.,	2023). In contrast to the latter model, 
our model indicated a negative relation with seasonal precipitation, 
rather than a positive relation with jaguarundi occupancy.

Our model predicted low probability of jaguarundi occupancy 
throughout	 much	 of	 Mexico,	 with	 high	 occupancy	 throughout	
most	of	Mesoamerica.	In	South	America,	we	predicted	high	prob-
ability throughout the more rugged northern part of the continent 
in	 the	 Andes,	 Llanos,	 and	 Cerrados	 areas	 (Ecuador,	 Colombia,	
Venezuela,	 and	 Brazil),	 while	 equally	 along	 the	 eastern	 part	 of	
the continent in the more humid areas of Chaco, Caatinga, and 
Atlantic	forest	(Brazil,	Bolivia,	Paraguay,	and	Argentina).	However,	
the probability of jaguarundi occupancy was predicted to be low 
at	the	core	of	their	known	range	within	the	Amazonian–Orinocan	
lowland,	particularly	in	the	Amazon	and	coastal	lowlands	and	the	
moist forests of the Brazilian Shield. This region is often consid-
ered	the	core	range	of	other	sympatric	pan-	Neotropical	felids,	e.g.,	
the ocelot (Leopardus pardalis) (Paviolo et al., 2015), and the mar-
gay (Leopardus wiedii)	(Oliveira	et	al.,	2015).	Although	it	is	widely	
recognised for its high biodiversity value in conservation priori-
tisation studies, our model suggests that this region represents 
sub- optimal conditions for jaguarundis.
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External	validation,	using	the	Nagy-	Reis	et	al.	 (2020) dataset, 
showed that our model predicted the probability of jaguarundi oc-
cupancy well; however, we note several areas where our model 
predicts high jaguarundi occupancy, while extensive research 
across these ranges have never detected a jaguarundi and they are 
likely	absent	(e.g.	Nagy-	Reis	et	al.,	2020). In particular, our model 
predicted a high probability of occupancy throughout the south-
ern	Andes	of	Chile	and	 the	southern	 tip	of	Patagonia,	which	we	
suspect was an artefact associated with the positive relationship 
with ruggedness and the negative relationship with precipitation 
seasonality. Likewise, the probability of occupancy was unexpect-
edly	high	 in	 the	Pampas	of	Uruguay	and	 the	coast	of	Argentina,	
likely associated with the high levels of herbaceous cover in this 
region. Conversely, the likelihood of jaguarundis occupying the 
Western	 Dry	 Chaco	 of	 northern/central	 Argentina	 was	 notably	
low, while historically this has always been part of the jaguarundi 
species range (Caso & Oliveira, 2015). This may be an artefact of 
the model, associated with the highly variable daytime tempera-
tures in this area.

Despite its limitations, the occupancy modelling framework 
is a robust approach to predict species distribution, indicated by 
similar results from both the stacked and spatial occupancy imple-
mentations (see Supplement: spatial occupancy results). We used 
these models to provide baseline estimates of global jaguarundi 
occupancy and habitat associations. The models could be refined 
by sampling sites across the total extent of covariate values, re-
ducing the need for capping, while equally refining the covariates 
by distinguishing between natural and agricultural land- cover, and 
expanding the covariates by incorporating data on potential com-
petitor and prey species. Using the estimated area of occupancy, 
we estimate the global population with a probability of occupancy 
of 0.8 to 0.5 to range from 36, 222 to 247, 411 individuals, respec-
tively.	However,	if	we	exclude	the	southern	Andes	of	Chile	and	the	
southern tip of Patagonia, knowing that jaguarundis are not pres-
ent, these estimates would drop to 34,645 to 230,034. This initial 
assessment provides a starting point, which should be updated as 
more data become available and the model refined with different 
covariate layers.
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