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Abstract
Aim: Planning conservation action requires accurate estimates of abundance and 
distribution of the target species. For many mammals, particularly those inhabiting 
tropical forests, there are insufficient data to assess their conservation status. We 
present a framework for predicting species distribution using jaguarundi (Herpailurus 
yagouaroundi), a poorly known felid for which basic information on abundance and 
distribution is lacking.
Location: Mesoamerica and South America.
Time Period: From 2003 to 2021.
Taxa: Herpailurus yagouaroundi.
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1  |  INTRODUC TION

Species conservation action and management require basic knowl-
edge of the distribution and abundance of the target species. 
However, such basic information is lacking for the majority of mam-
malian species, and assessments of threats and extinction risks are 
often based on expert opinion or unvalidated field methods, rather 
than empirical data (e.g. the IUCN Red List, Burgin et al., 2018, IUCN 
2023 accessed 1-Feb-2023). Data on abundance and distribution are 
notably scarce for many small- and medium-sized tropical mammal 
species (Bachman et  al., 2019). A good example is the jaguarundi 
(Herpailurus yagouaroundi), an understudied small felid, ranging 
throughout Latin America (Caso & Oliveira, 2015). Here, we assess 
the habitat associations, predict the geographic range, and estimate 
global population abundance of the jaguarundi.

Despite jaguarundis being the most widespread small felid 
species in the Western Hemisphere (Caso & Oliveira,  2015), a re-
view of the ecology and status of jaguarundis by Giordano  (2016) 
highlighted the paucity of jaguarundi-specific studies and the 
lack of information regarding species status throughout its range. 
Jaguarundis lack the necessary traits to attract research focus: the 
species is small-sized (3–8 kg), not particularly charismatic, not asso-
ciated with any economically important zoonosis, generally resides 
in range countries with limited economic capacity for ecological re-
search, and individuals are not uniquely distinguishable from photo 

records (Caso & Oliveira,  2015; Giordano,  2016; Tensen,  2018). 
Evidence suggests that jaguarundis occur in a range of habitats with 
dense undergrowth, and are present in mixed landscapes with low 
intensity agriculture, frequently co-occurring with other carnivore 
species associated with human-disturbed lands (Giordano,  2016). 
However, the extent to which they use different habitats or tolerate 
human activities is poorly known (Giordano,  2016). As one of the 
few fully diurnal cat species (Giordano, 2016), they are sighted reg-
ularly, compared with sympatric cat species, giving the perception 
that they are common (pers. obs. B.H., R.F.). The most recent IUCN 
assessment of jaguarundi status and extinction risk indicated that, 
while the species may be Near Threatened, data were insufficient to 
make this judgement range wide (Caso & Oliveira, 2015). Therefore, 
the assessors listed the species as Least Concern, with the caveat 
that it should be regularly revised as more data become available.

The advent of camera traps has greatly facilitated the study of cryp-
tic, terrestrial mammals, especially in the tropics (O'Connell et al., 2010), 
allowing the study of previously unknown species. Camera-trapping 
effort in the Neotropics has increased since the turn of the twenty-
first century, most notably for monitoring jaguars (Panthera onca, e.g. 
Foster et  al., 2020; Harmsen et  al.,  2017; Jȩdrzejewski et  al., 2018; 
Silver et  al.,  2004) but also for keeping track of the forest mammal 
community in general (i.e. TEAM network, Ahumada et al., 2011). The 
wide deployment of camera grids for estimating jaguar density (see 
Foster et al., 2020 for an overview) has resulted in several range and 

Methods: We combined camera-trap data from multiple sites and used an occupancy 
modelling framework accounting for imperfect detection to identify habitat associa-
tions and predict the range-wide distribution of jaguarundis.
Results: Our model predicted that the probability of jaguarundi occupancy is positively 
associated with rugged terrain, herbaceous cover, and human night-time light inten-
sity. Jaguarundi occupancy was predicted to be higher where precipitation was less 
seasonal, and at intermediate levels of diurnal temperature range. Our camera data 
also revealed additional detections of jaguarundis beyond the current International 
Union for Conservation of Nature (IUCN) range distribution, including the Andean 
foothills of Colombia and Bolivia.
Main Conclusion: Occupancy was predicted to be low throughout much of Amazonian 
lowlands, a vast area at the centre of jaguarundi known range. Further work is re-
quired to investigate whether this area represents sub-optimal conditions for the spe-
cies. Overall, we estimate a crude global jaguarundi population of 35,000 to 230,000 
individuals, covering 4,453,406 km2 of Meso-  and South America at the 0.5 prob-
ability level of occupancy. Our current framework allows for an initially detailed, well-
informed species distribution that should be challenged and refined with improved 
habitat layers and additional records of jaguarundi detection. We encourage similar 
studies of lesser-known mammals, pooling existing by-catch data from the growing 
bank of camera-trap surveys around the world.
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region-wide assessments of jaguars within a single analytical frame-
work (e.g. Jȩdrzejewski et  al., 2018; Paviolo et  al., 2016). Although 
mostly deployed for jaguars, these multitude of camera studies have 
detected many species beyond the largest cat of the Americas.

Camera traps log detections of all species that trigger the sen-
sors, and thus provide considerable data on non-target species 
(“by-catch” data). Many of these species do not have visually unique 
individual features necessary for mark–recapture abundance estima-
tion. In such cases, an occupancy modelling framework (MacKenzie 
et al., 2002), using presence/absence data and sampling effort, can 
provide a robust estimate of the species' probability of resource use 
across the landscape. This approach has allowed range-wide as-
sessments of the habitat associations and distribution of previously 
understudied species, including two threatened species, the white-
lipped peccary (Tayassu pecari, Thornton et al., 2020) and the Baird's 
tapir (Tapirus bairdii, Schank et al., 2020).

Detections of jaguarundis by camera traps are notably rare when 
compared with sympatric felids, white-lipped peccary or Baird's tapir 
(e.g. Carrera-Treviño et al., 2018; Di Bitetti et al., 2010; Gil-Sánchez 
et  al.,  2021; Maffei et  al.,  2007; Schank et  al.,  2020; Thornton 
et al., 2020). Recent efforts to assess jaguarundi abundance and distri-
bution have been mainly restricted to local density estimates (Ecuador, 
Gil-Sánchez et al., 2021), and presence-only data that do not account 
for sampling effort (da Silva et al., 2016; Espinosa et al., 2018). Presence-
only methods assume equal sample effort and detectability and are 
biased if these assumptions are not met. Grattarola et al. (2023) tried 
to account for this by modelling “presence-only” data in combination 
with an absence index with unknown search effort. Occupancy mod-
elling explicitly accounts for detection probability and sampling effort 
(Guillera-Arroita et al., 2014). Failure to account for detection proba-
bility and sampling effort is compounded when records are sparse and 
detection probability is low (Guillera-Arroita et al., 2014).

In this study, we use an occupancy modelling framework and 
camera-trap data from across the species range, to predict relative 
probability of jaguarundi habitat use and distribution. Given the low 
detection records of jaguarundis in the literature, and the need to 
incorporate sampling effort to account for imperfect detection, we 
only include camera survey data with known sampling effort. This 
approach allows us to quantify the relative probability of occu-
pancy and absence, allowing inference about jaguarundi habitat use, 
geographic range, and a first crude estimation of global population 
abundance based on our predicted area of occupancy (e.g. Steenweg 
et al., 2018, 2019). We consider our current effort the most thor-
ough study, to date, on jaguarundi status across its range.

2  |  METHODS

2.1  |  Study area

All authors in this study contributed raw data from 182 surveys in 13 
range countries (Mexico, Belize, Guatemala, El Salvador, Honduras, 
Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Guyana, 

Suriname, and Brazil). Surveys were conducted between 2003 and 
2021. Sampling was highly skewed towards Mesoamerica, with 
higher survey effort compared to other regions (Table 1; Figure 1). 
Our study concerned prediction of jaguarundi range, and thus cov-
ered the known Neotropical jaguarundi range of Meso- and South 
America, however our sample lacked representation from the 
Amazon region, which may be considered the spatial core of jagua-
rundi distribution range (Caso & Oliveira, 2015, Figure 1).

2.2  |  Data preparation

All data were collapsed into a single data-frame, where each row rep-
resented: a camera location with associated World Geodetic System 
(WGS 84) lat–long coordinates, name of survey, country of origin, and 
detection or non-detection of jaguarundi within a single 24 h day (detec-
tion =1, non-detection = 0). Each row contained covariate information 
relating to habitat type, climate conditions, and human disturbance. As 
camera-trap researchers usually do not gather habitat or environmental 
information around camera locations in a standardised fashion, we were 
limited to the use of range-wide remote-sensing data, overlaying map 
data with camera locations. As this was an exploratory analysis, we used 
an extensive array of spatial covariates (n = 19) that we expected would 
influence carnivore or mammal occupancy based on previous studies 
(e.g. Jȩdrzejewski et al., 2018, see Tables 2 and S1). Additional informa-
tion about the covariates (i.e. annual variation, data source, abbreviated 
name notations) is provided in Tables 2 and S1. The habitat, climate, and 
human influence conditions around the camera locations did not repre-
sent the full range of conditions found across the known range of the 
species. For comparison, we provide in Table S2 the covariate range val-
ues across the sampled sites, together with the range values across the 
IUCN jaguarundi distribution range (IUCN distribution map from Caso 
& Oliveira, 2015). Figure S1 provides a visual “heat map” representation, 
showing how the covariates vary across the continents.

We overlaid the area with a sampling grid of 6 × 6 km cells (36 km2, 
hereafter we shall use the term “site” to refer to a sample grid cell). 
Within occupancy modelling, the choice of site cell size can be some-
what arbitrary. Some studies have based cell size on the conserva-
tive lower end of home range size of the target species (e.g. 36 km2 
for white-lipped peccary (Thornton et al., 2020) or 10 km2 for jaguars 
(Petracca et al., 2018)). To date, range size estimation for jaguarundi 
has been anecdotal and highly variable, and we chose 6 × 6 km to 
reflect a reasonable home range size for a small Neotropical cat 
(Sunquist & Sunquist, 2002). We pooled all camera data within a site 
and used the site as the sampling unit. As the number of stations 
and sampling effort (number of trap-nights) varied between sites, 
we used these as covariates when modelling detection probability.

2.3  |  Analysis

None of the surveys included here were originally designed to moni-
tor jaguarundis specifically. Furthermore, the dataset combined 
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projects with disparate survey efforts in both space and time, with 
considerable variation in timing and duration (i.e. surveys were 
conducted throughout the year and varied in duration, ranging be-
tween 30 and 365 days). Therefore, we explored a variety of mod-
elling approaches using extensions to the standard single-season 
occupancy model (MacKenzie et  al., 2002), including stacked (e.g. 
Fuller et al., 2016; Linden & Roloff, 2013), autologistic (e.g. Tingley 
et  al.,  2016), continuous-time multiscale (Emmet et  al.,  2021), 

dynamic multi-season models (MacKenzie et al., 2003), and spatial 
occupancy models (Doser et al., 2022).

2.3.1  |  Occupancy analysis

We found that the stacked occupancy model implementation 
best accommodated our constraints and survey variability. This 

F I G U R E  1 Location of camera-trap stations (blue triangles) used for estimating jaguarundi occupancy overlaid with the current predicted 
jaguarundi range in beige (Caso & Oliveira 2015); red line indicates country borders.
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model allowed us to include the multi-year surveys conducted 
at several sites within a single-season occupancy model. Here, a 
single-season occupancy model is fit but the combination of site 
and year (hereafter “site-year”) becomes the sample unit used for 
occupancy probability, with each year represented as a separate 
survey (site-year). We used year-specific values per site-year for 
nine of the covariates, matching environmental conditions with 
the year a survey was conducted (see Table  2). A random ef-
fect for site was incorporated in the model to avoid artificially 
deflating variance and account for non-independence between 
repeated surveys that occur at the same site. We used a 7-day 
sampling occasion (i.e. collapsed 7 days into one encounter occa-
sion), such that the first day of the first sampling occasion began 
on whatever calendar date a camera became operational at any 
given site. For 11 covariates, we hypothesised that a quadratic 
relationship, rather than linear, might have a better fit, with a 
peak in occupancy at an intermediate value of the covariate (e.g. 
minimal occupancy at temperature extremes, maximal occupancy 
at mid-level temperatures). We therefore assessed the quadratic 
relationship for 11 climatic, elevation-derived, and human devel-
opment covariates. We centred and scaled all covariates before 
model fitting, using a Z transformation, using R (R Core Team., 
2022), resulting in all covariate values having a mean of 0 and a 
standard deviation (SD) of 1.

We used a multi-stage process to determine the final model. 
We first tested if sampling effort (i.e. the number of trap-nights 
per sample occasion) and the number of camera stations in each 
occasion (both log-transformed) had an effect on the probability 
of detection by fitting models with detection covariates but con-
stant occupancy (i.e. the null model Pr(occ) ~ 1). Using the best-
fit detection model, we ran models for each occupancy covariate 
individually (single covariate models). For the covariates listed 
above, we assessed both a linear relationship and a quadratic rela-
tionship and compared these models using expected log pointwise 
predictive density (ELPD), with higher values of ELPD indicating 
a more supported model (Vehtari et  al., 2017). We considered a 
difference of 4 points to be significant for these comparisons and 
otherwise chose the more parsimonious (linear) model. We then 
retained covariates, either linear only or linear and quadratic de-
pending on the best fit, for which the posterior distribution did not 
cross 0 and were not highly correlated (> 0.6) at the 90% credible 
interval (CI) for the global model. Figure S2 provides additional in-
formation on how all the 19 covariates were correlated with each 
other across the continent.

To assess the robustness of our model outcome, we equally 
ran an alternative model set up, using a spatial occupancy model 
implementation, using the spOccupancy package in R (Doser 
et  al.,  2022; R Core Team,  2022). While our stacked model ac-
counted for autocorrelation, using a random effect for site, the 
spOccupancy package allows the inclusion of spatial random ef-
fect. We used the same workflow as described above and provide 
results in a supplementary section (see Supplement: spatial occu-
pancy results).

2.3.2  |  Prediction

Using our global model, we predicted the probability of jaguarundi 
occupancy using mean point estimates for occupancy and covari-
ate coefficient parameters. As we created prediction maps outside 
our study area with covariate values sometimes exceeding or fall-
ing below the values found within our surveyed areas, we capped 
the covariate values to the maximum or minimum as found in our 
surveyed areas to avoid overprediction when extrapolation to areas 
where values exceeded or went below the maximum or minimum 
values for our survey areas. We used an external dataset to vali-
date our predicted occupancy probability across jaguarundi range 
as predicted from our final model. The recently published dataset 
by Nagy-Reis et al. (2020) contains presence records from a variety 
of Neotropical carnivores. We filtered this external dataset to in-
clude only camera surveys and used only one record of jaguarundi 
per unique coordinate location (n = 1262). We binned our predic-
tion layer into 10 quantiles and extracted the categorised predicted 
probability of occupancy for each observed jaguarundi occurrence 
from the external dataset. We evaluated Spearman's rank correla-
tion (rho or rs) based on the number of occurrences that fell within 
each predicted probability bin.

We used three probability thresholds (0.6, 0.75, and 0.8) to 
assess the jaguarundi range boundary. Within each predicted 
range, we excluded small (≤ 36 km2) and highly isolated areas that 
could not support multiple jaguarundis and estimated the total 
area of predicted jaguarundi occupancy for each of the three 
thresholds. We then calculated a simple estimate of the number 
of male and female jaguarundis that may be supported in the total 
area of occupancy, assuming two jaguarundis (one male and one 
female) per 36 km2.

All models were fit and predicted using “ubms” (unmarked 
Bayesian models with Stan) (Kellner et al., 2022) via program R (ver. 
4.1.3; R Core Team, 2022) using the stan_occu function. We ran all 
models (both single covariate and global models) for three chains of 
15, 000 iterations each and otherwise used the default settings. To 
assess general model convergence, we visually assessed trace plots 
and posterior distributions and checked that all R-hat convergence 
diagnostic values were < 1.05 (Vehtari et al., 2021) for both the indi-
vidual covariate models and the global model.

3  |  RESULTS

The combined dataset included 385,908 trap-nights from 662 
unique sites, which encompassed 3856 camera stations (Table 1). 
The number of surveyed sites varied widely among countries, 
from three in Suriname to 97 in Costa Rica (median = 51). The 
number of sampling occasions per site-year ranged from 1 to 53 
(median = 11). The majority of surveys were conducted after 2010, 
with only Belize and Nicaragua having eight surveys conducted in 
previous years (Table  1). There were 884 unique jaguarundi de-
tections (jaguarundis detected at a single camera station within 
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24 h) falling within 727 independent sampling occasions at 215 
sites (naïve occupancy = 0.325). Seventy-seven detections fell 
outside of the current IUCN jaguarundi range map showing jag-
uarundi occurrence in north-eastern El Salvador, central northern 
and southern Honduras, and the northern Andes of Colombia. 
Detection frequencies varied widely across sites and countries. 
Across all sampled sites, unique detections of jaguarundi ranged 
from 5 to 347 (median = 36, see Table 1) and capture rates ranged 
from 0.086 to 0.574 detections / 100 trap-nights (median = 0.237; 
see Table 1).

3.1  |  Occupancy analysis

Both effort (i.e. the total number of trap-nights) and number of 
camera stations for each site-year had a positive and supported 
influence on detection probability (Figure  2). As such, these pa-
rameters were included in the detection model for all occupancy 
models.

All single covariate models reached convergence, having suf-
ficient support to be considered in a final model, with Figure S3 
showing single peak normal distributions and Figure S4 showing 
trace plots remaining within a narrow and consistent band with 
each iteration. However, only six covariates influenced jagua-
rundi occupancy substantially enough to meet our criteria for final 
model inclusion (Table  3; Figure  S5): annual mean diurnal tem-
perature range, precipitation seasonality, harmonised night-time 
light intensity, percent non-tree vegetation, slope, and terrain 
ruggedness index. Slope and ruggedness were highly correlated 
(>0.6, see Figure S2), so we dropped slope from the global model 
as ruggedness had the larger magnitude of influence (Figures S3; 
Table S3). For the remaining five variables, only annual mean di-
urnal temperature better fit the data as a quadratic rather than 
a linear relation (Figures S3b and S4b; Table S4). Our final model 
comprised five environmental variables modelled as fixed effects 
on occupancy probability, a random effect for site, and two vari-
ables for detection probability (Figure 2; Table 3, with Figure S6 
showing trace plots for final model).

In our final model, detection probability was low (mean = 0.078, 
90% CI: 0.071, 0.085 on the real probability scale; mean = −2.725, 
90% CI: −2.936, −2.515 on the logit scale) when the number of trap-
nights and the number of camera stations were held at their mean 
and median values, respectively (23.5 trap-nights and 4 camera sta-
tions per occasion). Occupancy variance (sigma) was relatively large 
compared to covariate effects (mean = 2.133, 90% CI: 1.501, 2.890, 
Table 3), indicating variance among sites was not fully explained by 
the range-wide covariates. With all covariates held at their means 

and ignoring group-level random effects, baseline probability of 
occupancy (the intercept) in our global model was 0.516 on the 
real probability scale (90% CI: 0.408, 0.627; mean = 0.064, 90% CI: 
−0.370, 0.519 on the logit scale).

Percent non-tree vegetation, harmonised global night-time 
light intensity, and terrain ruggedness index all had a positive in-
fluence on occupancy probability (Table 3; Figure 2; Figures S5 and 
S6). In contrast, there was evidence that precipitation seasonality 
had a negative influence on occupancy, although the 90% CI over-
lapped marginally with 0 in the global model (Table  3; Figure  2b; 
Figures  S5 and S6). For the annual mean diurnal temperature 
range, occupancy had a bell-shaped quadratic relationship, rising 
then falling with increasing temperature range (Table 3; Figure 2b; 
Figures S5). Ruggedness had the highest absolute magnitude rela-
tive to the other spatial covariates (mean = 0.478, CI (90%) = 0.105–
0.901) followed by the diurnal temperature range (mean = − 0.431, 
CI = −0.679 – −0.194), percent non-tree vegetation (mean = 0.426, 
CI = 0.073–0.812), light intensity (mean = 0.336, CI = −0.01 – 0.722), 
and precipitation seasonality (mean = −0.231, CI = −0.643 – 0.162). 
See Figure S5 for visual inspection of posterior distribution of the 
included variables in the final model. See Figure S7 for visual inspec-
tion on where values were capped for the five model covariates in-
cluded in the final model.

The spatial occupancy implementation (see Supplement: spatial 
occupancy results) gave similar results as our stacked model, indicat-
ing that our occupancy implementation was robust.

3.2  |  Prediction

Our model predicted low probability of jaguarundi occupancy 
throughout much of Mexico, primarily in the desert, temperate si-
erras, and southern semi-arid highlands and the Yucatan Peninsula 
(Figure  3). Throughout the rest of Mesoamerica, our model pre-
dicted a high likelihood of jaguarundi occupancy (Figure 3). In South 
America, we predicted high probability throughout the northern 
Andes of Ecuador, Colombia, and Venezuela, with pockets of high 
probability of jaguarundi occupancy in Guinian Highlands, Ilanos of 
Colombia, and the Cerrados (Figure 3). Probability occupancy was 
also high in north-eastern Caatinga and throughout the Atlantic for-
ests of Brazil and Paraguay, the humid Chaco of Paraguay, central 
Bolivia, and eastern Argentina (Figure 3). However, the probability 
of jaguarundi occupancy was predicted to be low throughout much 
of the rest of the Amazonian–Orinocan lowland, particularly in the 
Amazon and coastal lowlands and the moist forests of the Brazilian 
Shield, as in the Central Andes (Figure  3). The area of occupancy 
covered 4,453,406 km2 at the lowest probability threshold (0.5), 

F I G U R E  2 (a) Influence of trap effort on detection probability of jaguarundi (upper graph), and influence of number of camera stations on 
detection probability of jaguarundi within a site (6 × 6 km2 grid cell; lower graph). The data are centred with mean = 0 and log-transformed. 
The grey shading around the graph line represents the 90% CI. (b) Influence of the five covariates, included in the final model, on occupancy 
probability of jaguarundi. Effects of each covariate on range-wide jaguarundi occupancy are shown while holding all other four covariates at 
their median, with 90% CI indicated in grey.
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2,030,093 km2 at the intermediate threshold (0.65), and 652,002 km2 
at the most conservative threshold (0.8), see Figure  4. Figure  S8 
shows a similar prediction map as Figure 4, clearly indicating which 
areas were affected by capping values.

External validation data (see Figure 3) indicated that our model 
predicted the probability of occurrence well (rs = 0.9154, p-value 
<.001, see Figure  3 for distribution of external validation points). 
Substantially more occurrences fell within our higher predicted 
probability bins; 46.9% of the external observations fell within our 
top third of predicted occupancy probability (bins 8–10; Figure 5). 
Using our simple equation of abundance estimate, multiplying the 
number of occupied cells of 36 km2 by 2, we estimate the global 
jaguarundi populations as 36,222 individuals at the most conserva-
tive occupancy threshold (0.8), 112,783 individuals at an occupancy 
probability threshold of 0.65, and for the lowest threshold of occu-
pancy probability (0.5), we estimate 247, 411 individuals.

4  |  DISCUSSION

Although the range of the jaguarundi is known to span the Western 
Hemisphere, from Mexico to Argentina (Caso & Oliveira, 2015), we 
noted new records in southwestern Mexico, southern Guatemala, 
north-eastern El Salvador, central northern and southern Honduras, 
the northern Andes of Colombia, and the central Andes of Bolivia 
(this study and Nagy-Reis et  al.,  2020). Pooling camera-trap data 
from multiple sites across the region and using occupancy modelling, 
we found positive associations between jaguarundi occupancy and 
level of: non-tree vegetative cover (undergrowth and shrub habitat), 

human land-use (measured as night-time light intensity), intermedi-
ate diurnal temperatures, and rugged terrain, while seasonal varia-
tion in precipitation had a negative association with occupancy.

Despite almost 400,000 trap-nights, detection rates were con-
sistently low, ranging from 0.09 detections per 100 trap-nights in 
Guyana to 0.57 in Honduras. These results compare similarly with 
the few published detection rates of jaguarundi in other camera-trap 
studies across the Neotropics, ranging from 0.03 to 0.81 detections 
per 100 trap-nights (Boron et al., 2020; Carrera-Treviño et al., 2018; 
Di Bitetti et al., 2010; Gil-Sánchez et al., 2021; Maffei et al., 2007; 
Santos et al., 2019). In most of these studies, camera traps were de-
ployed to optimise the detection of larger felids (jaguars and pumas, 
Puma concolor), thus were potentially sub-optimal for smaller spe-
cies, resulting in low detection rates of jaguarundis (see Harmsen 
et al., 2021).

Negative biases in occupancy estimates can arise due to the ef-
fects of unmodelled heterogeneity in the probability of detection 
(‘detectability’; Mackenzie & Royle, 2005). Although our model ac-
counted for heterogeneity in effort between the sample sites, there 
likely remains unexplained heterogeneity in detectability within 
sites between camera stations, associated with factors such as cam-
era height, trail width, camera placement, camera model, and vari-
ation in micro-habitat around cameras. The influence of this kind of 
heterogeneity on occupancy estimates may be exacerbated if the 
species has low detectability (Mackenzie & Royle, 2005), as jagua-
rundis seem to have across their range. The chance of detecting 
jaguarundis in an area increased with trapping effort. Jaguarundis 
were more likely to be detected at sites with more camera sta-
tions and more sampling occasions, indicating that knowledge of 

Mean SD LCI UCI R-hat

Occupancy probability

Intercept 0.064 0.270 −0.370 0.519 1.00

Annual mean diurnal temp. 
range

−0.198 0.196 −0.523 0.121 1.00

Annual mean diurnal temp. 
range (quadratic)

−0.431 0.148 −0.679 −0.194 1.00

Precip. seasonality −0.231 0.246 −0.643 0.162 1.00

Harmonised global night-
time light intensity

0.336 0.224 −0.010 0.722 1.00

Perc. non-tree vegetation 0.426 0.225 0.073 0.812 1.00

Terrain ruggedness index 0.478 0.244 0.105 0.901 1.00

Sigma (site random effect) 2.133 0.022 1.501 2.890 1.00

Detection probability

Intercept −2.725 0.129 −2.936 −2.515 1.00

Camera trap-nights 0.285 0.034 0.230 0.341 1.00

No. of stations 0.181 0.068 0.070 0.293 1.00

Note: The results are for the six variables for which the 90% posterior distribution (CI) did not 
include 0, using single covariate occupancy models. We include both the quadratic and the linear 
results for annual mean diurnal temperature range. Presented are the mean, standard deviation 
(SD), the lower boundary of the 90% credible interval (LCI), upper boundary of the 90% credible 
interval (UCI), and the R-hat convergence diagnostic.

TA B L E  3 Final model parameter 
estimates of jaguarundi occupancy and 
detection, using a Bayesian analysis 
framework.
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sample effort is vital to understand occupancy and presence. In the 
absence of validation, we caution against the use of models mak-
ing impactful statements about species distribution. For example, 
Grattarola et  al.  (2023) described a sizable change in jaguarundi 
distribution across the last two decades. Using a published dataset 
(Nagy-Reis et al., 2020), they described a north–south species range 

contraction, and an overall east–west expansion within the last de-
cade, comparing the periods 2000–2013 and 2014–2021. Such a 
statement implies considerable environmental change and/or per-
turbation on the species, coinciding with extensive extinction and 
colonisation events across this latter decade. However, their models 
did not include sample effort, instead using presence-only and an 

F I G U R E  3 Predicted probability of occurrence across jaguarundi range, derived from our final occupancy model. The probability of 
occupancy is shown as 10 separate bin colours, varying from low chance of occupancy (yellow) to high chance of occupancy (dark blue), 
using green as an intermediate. The red dots in the map indicate locations where jaguarundi were detected, using the database of Nagy-Reis 
et al. (2020).
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absence index based on the overall non-reporting of jaguarundi. On 
close inspection of the Nagy-Reis et al. (2020) dataset, the reported 
survey activity was highly variable across space, between the two 
decades, contracting along the North–South axis and expanding on 
the West–East axis, seemingly following the pattern of extinction 
and colonisation reported by Grattarola et al. (2023).

Jaguarundis are commonly associated with areas of dense shrub 
or undergrowth which provide den sites, shade during diurnal ac-
tivity, shelter, cover for ambush hunting, and likely support abun-
dant populations of rodents and birds, their main vertebrate prey 
(Giordano,  2016). Accordingly, we found that the probability of 
jaguarundi occupancy increased with non-tree vegetative cover, 

F I G U R E  4 Predicted probability of occurrence across jaguarundi range, derived from our final occupancy model. We show three 
threshold levels of occupancy, in three colours, from high threshold to low: probability of occurrence: 0.5 (yellow), 0.65 (green) and 0.8 
(blue). The original assessed IUCN red list jaguarundi range is overlaid in beige (Caso & Oliveira, 2015).
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suggesting a preference for grasslands, savannas, and shrublands, 
and potentially agricultural lands, rather than forest interiors or bare 
ground. Additionally, jaguarundi occupancy increased with the ter-
rain ruggedness. Potentially, their elongated body form, long tail, and 
comparatively short legs allow jaguarundis to exploit rough areas 
that are less accessible to their competitors. In carnivores, active 
selection for rugged terrain may provide refugia from interspecific 
competition and predation (Durant, 1998), for example safe denning 
sites (e.g. Eurasian lynx, Lynx lynx; White et al., 2015), as well as giv-
ing an advantage when stalking prey (e.g. dhole, Cuon alpinus, and 
puma, Puma concolor; Grassman et al., 2005; Smith et al., 2019). Both 
terrain ruggedness and non-tree vegetation cover had the strongest 
effects on jaguarundi occupancy, each having approximately twice 
the effect compared to the next strongest covariate. For both covari-
ates, we did not sample the upper extent of ruggedness and non-tree 
vegetative cover present within the prediction area (e.g. the peaks 
of the Andes, and the Argentine Pampas, respectively). It is however 
difficult to predict the effect of ruggedness beyond our sampled 
data. We would expect a cut-off point when high ruggedness be-
comes a barrier to jaguarundi movement and we know this point was 
not reached within our sampled datasets. Furthermore, the majority 
of our sites were located within non-tree vegetative cover, sampled 
natural herbaceous cover, rather than agricultural lands (pastures 
and croplands). As our covariate layer did not distinguish between 
natural cover and agricultural uses, our model may overestimate the 
probability of jaguarundi occupancy in extensive farmland lacking 

patches of dense natural undergrowth or shrubs. Notably, our model 
predicted a high probability of jaguarundi occupancy throughout 
Uruguay, where despite extensive camera trapping and research ef-
fort spanning 115 years (da Silva et al., 2016; Espinosa et al., 2018; 
Nagy-Reis et al., 2020), there is only one confirmed detection of a 
jaguarundi (Grattarola et  al., 2023). Approximately 80% of land in 
Uruguay is dedicated to agriculture uses, primarily livestock (The 
World Bank,  2020). We suspect that this area is devoid of jagua-
rundis and that the high probability of occupancy estimated by our 
model is an artefact of the positive association with natural herba-
ceous cover applied to extensive pasture and arable land.

Using night-time light intensity as a proxy for human impact, 
we found that jaguarundi resource use increased with human ac-
tivity. However, our sampling was confined to natural areas within 
sparsely populated rural communities. Above some threshold 
where light intensity reaches levels associated with urbanisation, 
we expect a negative relationship, with occupancy declining to 
zero in densely populated areas. Considering also the positive 
association with non-tree vegetative cover, these results suggest 
that jaguarundis tolerate some human activity and have an affinity 
for habitats associated with rural human populations. However, 
the extent to which they make use of human-modified landscapes 
is unclear (Giordano, 2016). Although jaguarundis occur in mixed 
agricultural areas with remnants of forest fragments, several stud-
ies suggest a negative association with croplands and pastures, a 
positive association with natural herbaceous cover, and a positive 

F I G U R E  5 Number of jaguarundi 
occurrences from the validation dataset 
of Nagy-Reis et al. (2020) that fell within 
10 quantile bins of predicted probability 
of occupancy, as derived from our final 
occupancy model. The 90% confidence 
interval is shown in grey.
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association with proximity to native forest, which become more 
important as the proportion of crop and pasture increases (Boron 
et  al.,  2020; Costa et  al.,  2022; Cruz et  al., 2019). The negative 
effect of croplands and pastures on jaguarundis versus the pos-
itive effect of natural herbaceous cover may be associated with 
prey availability. Thus, in agricultural landscapes we expect that 
jaguarundis are more successful around rural small-holdings, 
where they can supplement their diet with domestic species, par-
ticularly poultry (Giordano,  2016), and human-associated rodent 
populations. In contrast, expansive monocultures are less hospi-
table (e.g. Boron et al., 2020) and may lack sufficient prey. Living 
in human-modified landscapes exposes jaguarundis to additional 
threats. As predators of domestic fowl (Giordano,  2016), they 
are commonly blamed for attacks on poultry and suffer retalia-
tory killings by people (Foster, 2018). Because the diurnal activ-
ity pattern of jaguarundis coincides with human activities, roads 
pose a particular risk, disrupting their behaviour and increasing 
mortality (Gil-Sánchez et al., 2021). Indeed, in a global assessment 
on the fragmenting effect of roads and highways on mammalian 
carnivore species, jaguarundis were listed in the top 5% of spe-
cies most vulnerable to road expansion (Ceia-Hasse et al., 2017). 
Understanding the limitations of jaguarundi tolerance to human 
activity will be pivotal for its conservation in the coming decades.

Considering climatic conditions, our model predicted higher 
probabilities of jaguarundi occupancy where precipitation was less 
seasonal, and at intermediate levels of diurnal temperature range. 
We hypothesise that highly seasonal rainfall may influence jagua-
rundis directly, and indirectly via an impact on prey availability. 
Flooding may reduce accessibility to refuges and hinder movement 
across the landscape for both jaguarundis and their prey, while 
seasonal drought conditions may reduce food resources and thus 
prey abundance. In areas where climatic variation is even more 
extreme than the capped values, our model may have overesti-
mated the probability of jaguarundi occupancy in areas of higher 
seasonality in precipitation and more variable diurnal tempera-
tures, and underestimated it in capped areas where precipitation 
is not seasonal.

Our model predicted the occupancy of jaguarundi without ac-
counting for possible effect(s) of prey availability, a key driver of the 
spatial distribution of obligate carnivores. In the case of Neotropical 
felids, prey abundance was more important than interspecific com-
petitors or habitat complexity in explaining the occupancy of jaguars, 
pumas, and ocelots (Santos et al., 2019). In the Brazilian Caatinga, 
prey occurrence had a positive effect on habitat use of oncillas and 
jaguarundis (Dias et  al.,  2019), and in the High Andes of Bolivia, 
the occupancy of the Andean cat (Leopardus jacobita) and Pampas 
cat (Leopardus colocolo) increased with prey availability (Huaranca 
et al., 2022). Given that jaguarundi diet encompasses several classes 
of small terrestrial vertebrate, estimating and including prey avail-
ability in our model was beyond the scope of this study, however we 
infer that the majority, if not all, of the covariates in our final model 
are direct predictors of suitable prey abundance and availability (e.g. 
Moreno-Sosa et al., 2022).

Our model did not incorporate the distribution or abundance of 
potential predators or interspecific competitors, which might be im-
portant explanatory variables of felid distribution. The jaguarundi is 
sympatric with at least seven other felid species, overlapping most 
extensively with jaguars, pumas, ocelots, and margays (de Oliveira 
et al., 2015; Nielsen et al., 2015; Paviolo et al., 2015). High dietary 
overlap exists between jaguarundis and the other sympatric small 
felids (e.g. Migliorini et al., 2018; Silva-Pereira et al., 2011; Zuercher 
et al., 2022). Although this may indicate the potential for competitive 
exclusion and effects of interspecific competition on distribution, 
coexistence is likely facilitated by their differing activity patterns 
rather than spatial segregation (e.g. Dias et al., 2019; Fox-Rosales & 
de Oliveira, 2023; Giordano, 2016; Santos et al., 2019). Based on size 
differences and range overlap, jaguars, pumas, and ocelots are all 
capable of killing jaguarundis (de Oliveira & Pereira, 2014). However, 
although intraguild predation occurs, it is not commonly detected 
among these species (Crawshaw,  1995; Magioli & Ferraz,  2018; 
Martins et  al.,  2008). Indeed, empirical data from the Brazilian 
Caatinga showed no evidence of spatial segregation, intraguild com-
petition, or predation between jaguarundis and jaguars, pumas, oce-
lots, or oncillas (Dias et al., 2019; Fox-Rosales & de Oliveira, 2023). 
It would be worthwhile that future analyses include occupancy and/
or detection of competing meso-carnivores within the analytical 
framework to assess impacts of competition.

Our model predicted jaguarundi area of occupancy ranging 
from 652,002 km2 to 4,453,406 km2 (using the 0.8 to 0.5 occu-
pancy thresholds). This is more conservative than previous range 
estimates of: at 14, 900,000 km2, based on expert opinion Caso 
and Oliveira  (2015); at 14, 700, 000 km2 based on presence-only 
data and temperature as a measure of habitat suitability (Espinosa 
et  al.,  2018); or at 12,000,000 km2, based on annual temperature 
range, precipitation seasonality, elevation, and net primary produc-
tivity (NPP) (Grattarola et al., 2023). In contrast to the latter model, 
our model indicated a negative relation with seasonal precipitation, 
rather than a positive relation with jaguarundi occupancy.

Our model predicted low probability of jaguarundi occupancy 
throughout much of Mexico, with high occupancy throughout 
most of Mesoamerica. In South America, we predicted high prob-
ability throughout the more rugged northern part of the continent 
in the Andes, Llanos, and Cerrados areas (Ecuador, Colombia, 
Venezuela, and Brazil), while equally along the eastern part of 
the continent in the more humid areas of Chaco, Caatinga, and 
Atlantic forest (Brazil, Bolivia, Paraguay, and Argentina). However, 
the probability of jaguarundi occupancy was predicted to be low 
at the core of their known range within the Amazonian–Orinocan 
lowland, particularly in the Amazon and coastal lowlands and the 
moist forests of the Brazilian Shield. This region is often consid-
ered the core range of other sympatric pan-Neotropical felids, e.g., 
the ocelot (Leopardus pardalis) (Paviolo et al., 2015), and the mar-
gay (Leopardus wiedii) (Oliveira et al., 2015). Although it is widely 
recognised for its high biodiversity value in conservation priori-
tisation studies, our model suggests that this region represents 
sub-optimal conditions for jaguarundis.
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External validation, using the Nagy-Reis et al.  (2020) dataset, 
showed that our model predicted the probability of jaguarundi oc-
cupancy well; however, we note several areas where our model 
predicts high jaguarundi occupancy, while extensive research 
across these ranges have never detected a jaguarundi and they are 
likely absent (e.g. Nagy-Reis et al., 2020). In particular, our model 
predicted a high probability of occupancy throughout the south-
ern Andes of Chile and the southern tip of Patagonia, which we 
suspect was an artefact associated with the positive relationship 
with ruggedness and the negative relationship with precipitation 
seasonality. Likewise, the probability of occupancy was unexpect-
edly high in the Pampas of Uruguay and the coast of Argentina, 
likely associated with the high levels of herbaceous cover in this 
region. Conversely, the likelihood of jaguarundis occupying the 
Western Dry Chaco of northern/central Argentina was notably 
low, while historically this has always been part of the jaguarundi 
species range (Caso & Oliveira, 2015). This may be an artefact of 
the model, associated with the highly variable daytime tempera-
tures in this area.

Despite its limitations, the occupancy modelling framework 
is a robust approach to predict species distribution, indicated by 
similar results from both the stacked and spatial occupancy imple-
mentations (see Supplement: spatial occupancy results). We used 
these models to provide baseline estimates of global jaguarundi 
occupancy and habitat associations. The models could be refined 
by sampling sites across the total extent of covariate values, re-
ducing the need for capping, while equally refining the covariates 
by distinguishing between natural and agricultural land-cover, and 
expanding the covariates by incorporating data on potential com-
petitor and prey species. Using the estimated area of occupancy, 
we estimate the global population with a probability of occupancy 
of 0.8 to 0.5 to range from 36, 222 to 247, 411 individuals, respec-
tively. However, if we exclude the southern Andes of Chile and the 
southern tip of Patagonia, knowing that jaguarundis are not pres-
ent, these estimates would drop to 34,645 to 230,034. This initial 
assessment provides a starting point, which should be updated as 
more data become available and the model refined with different 
covariate layers.
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